论文部分内容阅读
交通标志识别设备的功耗和硬件性能较低,而现有卷积神经网络模型内存占用高、训练速度慢、计算开销大,无法应用于识别设备.针对此问题,为降低模型存储,提升训练速度,引入深度可分离卷积和混洗分组卷积并与极限学习机相结合,提出两种轻量型卷积神经网络模型:DSC-ELM模型和SGC-ELM模型.模型使用轻量化卷积神经网络提取特征后,将特征送入极限学习机进行分类,解决了卷积神经网络全连接层参数训练慢的问题.新模型结合了轻量型卷积神经网络模型内存占用低、提取特征质量好以及ELM的泛化性好、训练速度快的优点.实验结果表明.