论文部分内容阅读
针对光伏输出功率预测问题,提出相似样本及PCA相结合的光伏输出功率预测模型。通过对光伏发电系统历史发电量数据和气象数据相关性分析,根据辐照度具有时间周期性和邻近相似性的特性选取参考样本,求取预测日与参考样本辐照度的欧氏距离并确定相似样本,采用PCA对相似样本提取主成分作为神经网络的输入,简化网络结构。仿真结果表明,相似样本算法可以有效地对不同天气类型的光伏输出功率进行预测,基于PCA的神经网络模型可进一步提高预测精度、泛化性能更好。