论文部分内容阅读
针对决策模板法在业务感知准确率上的局限性问题,提出了加权决策模板法。该方法首先利用有监督的神经网络模糊聚类分类器作为基本分类器,再通过混淆矩阵衡量分类器对样本不同类别的置信度,经过两级的性能权衡,赋予该算法更高的可信度。在训练阶段根据错误分类的样本构造一个附加的加权决策模板,若在测试阶段有样本离该模板的距离最近时,可以认为该样本被错误分类的可能性很大,从而保证该算法具有高识别准确率。实验结果表明,与决策模板法对比,加权决策模板法在业务感知上具有更高的准确性。