论文部分内容阅读
针对扑翼飞行器面向控制建模时无法直接测量气动参数并精确建立气动模型的问题,传统BP网络辨识法依据扑翼飞行器试飞数据,使用BP网络计算当前气动参数,再结合扑翼飞行器动力学模型计算其飞行状态,与试飞数据比较后,将误差经扑翼飞行器动力学模型反向传播至BP网络来更新网络参数。实验表明传统方法计算精度较低,且动力学模型复杂度高,存在梯度消失问题,为此提出一种基于双BP神经网络的气动参数辨识方法。该方法首先采用一个BP网络对扑翼飞行器动力学模型进行逆向辨识,为后续气动参数辨识提供理想网络计算模型,再结合批量随机