论文部分内容阅读
城市交通路径规划需要考虑规划的快速性和车辆的安全性,而目前大多数强化学习算法不能兼顾两者。针对这个问题,首先提出采用基于模型的算法和与模型无关的算法相结合的Dyna框架,以提高规划的速度;然后使用经典的Sarsa算法作为选路策略,以提高算法的安全性;最后将两者结合提出了改进的基于Sarsa的Dyna-Sa算法。实验结果表明,提前规划步数越多的强化学习算法收敛速度越快。使用收敛速度和碰撞次数等指标,将Dyna-Sa算法与Q-学习算法、Sarsa算法和Dyna-Q算法进行对比,可知Dyna-Sa算法能够