论文部分内容阅读
光学遥感图像飞机检测是遥感分析的重要研究方向。现有检测方法难以达到满意的效果,传统检测方法由于手工特征建模困难,易受背景干扰,导致其鲁棒性普遍偏低;而以复杂度提升为代价来提高检测性能的深度学习目标检测方法无法在资源受限下的星载平台得到广泛应用。针对上述问题,本论文提出一种具有轻量化多尺度特点的深度学习飞机目标检测方法。在多尺度目标检测框架(SSD)基础上,利用密集连接结构和双卷积通道构成具有特征重复利用、计算效率高等特点的基础骨干网络,之后连接一个由残差模块和反卷积构成的多尺度特征融合检测模块,以提