基于不平衡文本分类的改进Stacking模型

来源 :计算机与数字工程 | 被引量 : 0次 | 上传用户:xtmpjordan
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
文本情绪分类中消极情绪往往对决策者有着很重要的借鉴作用,然而很多情况下,消极情绪是难以识别的少部分。为了提高消极情绪的分类效果,提出了一种融合随机森林和逻辑回归的改进Stacking模型。该模型采用多次欠采样训练多个随机森林作为初级分类器,采用逻辑回归作为次级分类器,基于Amazon电子商务平台的购物评论数据集进行了验证。实验结果表明,该模型能够有效提高不平衡文本分类的分类效率。
其他文献
为应对传统蚁群算法在解决旅行商问题(TSP)中求解精度不高、算法易早熟等问题,提出融合奖惩学习策略的动态分级蚁群算法(DHL-ACS)。首先将蚁群动态划分为帝国蚁、殖民蚁及国王蚁,其中帝国蚁与殖民蚁执行局部信息素更新,国王蚁执行全局信息素更新,在局部信息素更新中帝国蚁执行较大权重系数,负责对较优解的开发增强算法导向性,殖民蚁执行较小权重系数,负责对次优解的探索保证算法多样性,并利用帝国蚁与殖民蚁交换优质解的方式提高解的精度。其次提出一种改进的学习策略,通过奖励帝国蚁与殖民蚁的公共路径以实现较优解的同化作用