论文部分内容阅读
传统的流形学习局部线性嵌入(locally linear embedding,u正)算法通过欧氏距离来选择邻域,如果数据集选自多个类别,这种距离度量方法无法得到正确的邻域关系。本研究提出一种改进的局部线性嵌入(modified LLE,MLLE)算法,该算法通过改进距离矩阵,使得类间的距离大、类内的距离小,从而使得邻域的选择尽量在一个类中。将MLLE算法应用到中文文本分类中,结果表明:与传统的算法比较,MLLE在分类结果可视化效果和识别率等方面都有显著提高。