论文部分内容阅读
为了提高大坝变形分析模型的预测精度并检验模型的泛化能力,研究了大坝变形分析的BP神经网络模型,并基于神经网络BP算法和传统的统计模型建立了大坝变形分析的融合模型.结合陈村大坝多年的变形观测数据,对上述3种模型进行了试算及分析.分析结果表明,统计模型的平均预测精度为±0.477mm.BP神经网络模型的平均预测精度为±0.390mm,融合模型的平均预测精度为±0.318mm,相比统计模型和BP神经网络模型分别提高了33%和18%,且泛化能力较强,具有广泛的适用性.