论文部分内容阅读
传统的基于信息内容的概念相似度算法在计算信息内容值时过于依赖语料库,给出一个新的只通过WordNet结构计算概念语义相似度的信息内容模型。该模型以WordNet的is-a关系为基础,不仅考虑了概念所包含的子节点个数和所处深度,而且将该概念所处的簇及父节点的信息内容值引入到模型中,使得概念的信息内容值更为精确。实验结果显示将该模型应用到领域本体的概念相似度计算中,可以明显提高现有相似度算法的性能。