论文部分内容阅读
针对口语对话系统领域分类任务中传统领域分类方法如SVM需要进行大量人工标注的问题,将LDA(Latent Dirichlet Allocation)模型应用于口语对话系统领域分类;针对口语对话内容少、长度短、数据稀疏等问题,在LDA模型基础上提出了基于词嵌入文本扩充的口语对话系统领域分类方法.该方法主要特点是:1)使用词嵌入方法word2vec对类似于短文本的语音识别后的口语对话文本进行语义扩充,将短文本转化为长文本,使主题模型LDA更加有效地估计口语对话文本的隐含主题;2)采用无监督的概率生成模型