论文部分内容阅读
RAKEL(random K一latekets)算法是一种集成技术,能有效解决多标签分类问题.它将原始标签集随机 选用一小部分标签子集构成的数据集来训练每个分类器,但由于RAKEL算法构造标签空间的随机性,并未充分考察到样本多个标签之间的相关性,从而造成分类精度不高,泛化性能受到一定影响.为此,提出了改进的LC-RAKEL算法.首先,通过标签聚类将原始标签集划分成标签簇,再从每个标签簇中各选择一个标签构 成标签集,以此发现标签空间中重要且不频繁的映射关系;然后,利用出现次数较少的标签集合组成新的训练数据