基于多元时间序列分析的控制系统执行器故障诊断方法研究

来源 :自动化与仪表 | 被引量 : 0次 | 上传用户:fkswind
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
为提高控制系统执行器故障实时诊断的准确率,该文提出一种基于多元时间序列分析的控制系统执行器在线故障诊断方法.首先分析了控制系统执行器故障机理,确定了表征执行器故障的关键信号;其次采用执行器历史数据,建立了时间卷积网络(TCN)在线预测模型,对执行器多通道信号进行在线预测;随后通过长短期记忆网络(LSTM)对多通道残差信号建立了故障分类模型;最后以燃气轮机控制系统执行器半物理试验平台中的电液执行器为例进行了多次重复试验验证.结果 表明,基于TCN网络的在线预测模型相比传统循环神经网络(RNN)预测误差较小;基于LSTM网络的故障分类模型准确率较高;通过LSTM网络对多通道残差信号进行故障分类,比对原始故障数据分类故障准确率更高.
其他文献
鄂尔多斯盆地樊家川长6储层为新的开发区域,其中长63为主力油层.为研究其致密储层特征及主控因素,开展了岩石薄片鉴定、常规物性及高压压汞分析等,对储层的岩石学、物性及孔隙结构特征进行了详细研究,建立了不同孔隙结构与成岩参数的识别函数,分析了不同孔隙结构储层储集性能主控因素.结果表明:①樊家川地区长63主要岩石类型为岩屑长石砂岩,岩性较细,黏土矿物主要发育水云母,其次是绿泥石,碳酸盐胶结物主要发育铁白云石,其次是铁方解石;②樊家川地区长63储层孔隙主要发育粒间孔和长石溶孔,物性较差,平均孔隙度为9.05%,平
视频标题生成与描述是使用自然语言对视频进行总结与重新表达.由于视频与语言之间存在异构特性,其数据处理过程较为复杂.本文主要对基于“编码-解码”架构的模型做了详细阐述,以视频特征编码与使用方式为依据,将其分为基于视觉特征均值/最大值的方法、基于视频序列记忆建模的方法、基于三维卷积特征的方法及混合方法,并对各类模型进行了归纳与总结.最后,对当前存在的问题及可能趋势进行了总结与展望,指出需要生成融合情感、逻辑等信息的结构化语段,并在模型优化、数据集构建、评价指标等方面进行更为深入的研究.
含多类型分布式电源的微电网已经成为了未来电力系统的重要发展方向,其中风能和光能在降低化石能源消耗和二氧化碳排放等方面有着极大优势,考虑二者之间强互补性的协同调度已被广泛研究.但风/光协同调度的微电网多关注分钟级的调度或优化问题而非风/光波动下秒级的实时电流按容量比例精准分担,简称电流均衡,而精准电流均衡有助于可再生能源的高比例消纳.因此,本文提出了基于自适应动态规划的微电网电流均衡和电压恢复控制策略.首先,构建包含风电整流型电能变换器和光电升压型电能变换器的广义风光拓扑同胚升压变换器模型,其提供了后续控制