论文部分内容阅读
通过引入支持向量机(SVM)方法,提出了基于SVM的遥感图像多类分类模型,分析了SVM多类分类器的构造及其参数选取问题,并结合实例,讨论了SVM分类器性能随其本身参数变化情况,最后与几种代表性的BP网络改进模型进行了系统的对比分析。实验表明,SVM方法的分类时间要远大于改进的BP模型,而分类精度优于BP网络改进模型中效果最好的几种优化算法3个百分点左右,是一种有效的图像分类方法。