论文部分内容阅读
当前,基于机器学习方法开展农作物分类研究,对于确保干旱区粮食安全和生态安全有着极为重要的现实意义。基于机器学习方法,采用时间序列Sentinel 2A遥感数据提取农作物分类信息,通过引入地块基元和红边特征,探讨了不同分类特征组合对机器学习分类精度的影响。结果表明:随机森林分类器可以有效集成光谱和植被指数等多维向量的优势,将其应用于干旱区典型农作物分类上的精度均在89%以上,分类组总体精度最高可达94.02%。地块基元点集支持下的分类特征提取方法能够提高机器学习效率和农作物分类精度,使光谱组及指数组的