论文部分内容阅读
隐马尔可夫模型(HMM)是一种强大的统计学机器学习技术,该模型已经成功地应用于连续语音识别、在线手写识别,在生物学信息中也得到了广泛的应用。由于该模型的强大的学习能力,在自然语言处理领域逐渐得到了应用。对隐马尔可夫模型在词性标注、命名实体识别、信息抽取应用中的关键问题进行了分析。着重分析了在信息抽取时使用隐马尔可夫模型的重点和难点问题,期望让更多的研究人员进一步认识和了解HMM。最后分析了隐马尔可夫模型在应用中的不足之处和改进研究。