论文部分内容阅读
超声图像是乳腺癌辅助诊断常用的工具之一.肿瘤分割是乳腺超声图像分析的基础.乳腺超声图像中的灰度不同质性、纹理及形状的多变性等复杂特点使得肿瘤的精确分割较为困难.提出了一种层次化的分割框架.首先将局部灰度聚类假设引入活动轮廓模型作为底层分割模型,对图像进行初始分割;然后提出基于超像素和支持向量机(Support Vector Machine,SVM)的高层分割模型,对初始结果再进行高层分割.在高层分割过程中,首先使用简单线性迭代聚类(Simple Linear Interactive Cluster,