论文部分内容阅读
针对一类带有死区模型并具有未知函数控制增益的不确定MIMO非线性时滞系统,基于滑模控制原理和Nussbaum函数的性质,提出了一种稳定的自适应神经网络控制方案.该方案放宽了对函数控制增益上界为未知常数的假设,并通过使用Lyapunov-Krasovskii泛函抵消了因未知时变时滞带来的系统不确定性.理论分析证明,闭环系统是半全局一致终结有界.仿真结果表明了该方法的有效性.