论文部分内容阅读
针对最大间距准则算法中训练样本类内平均值并不能对类内中心做精确估计的问题,提出一种基于中间值的最大间距准则特征提取方法.首先应用样本中间值代替样本的平均值来重新定义类间散度矩阵和类内散度矩阵,然后根据最大间距准则思想得到最优投影矩阵,最后利用三阶近邻分类器进行分类识别.在ORL、Yale和FERET人脸图像库上的仿真实验结果表明,该方法不仅提高了人脸识别率,而且具有较强的鲁棒性.