论文部分内容阅读
研究表明,房地产价格指数常表现为非线性,要对它进行预测就必须利用一种能模拟非线性的模型。从理论上讲,神经网络能够无限逼近非线性函数,所以本文便尝试采用神经网络模型作为预测的模型。本文具体运用的是基于误差反向传播算法的多层前馈网络(BP神经网络)和径向基函数(RBF)神经网络。首先利用BP神经网络对采集到的中国房地产价格指数进行训练和模拟,最后进行预测,并比较预测结果和真实值。发现误差比较大,一方面是因为选取的样本数据少,另一方面是因为BP神经网络本身具有缺陷。为了克服BP神经网络预测的缺陷,本文接着运用R