论文部分内容阅读
针对目前离散化信息量度无法准确表征数据离散后有效分类信息量的问题,提出了一种基于有效信息比率的离散化算法.在构建离散化方案相依表的基础上,分析了离散区间内类属性分布与分类信息蕴含量间的关系,并根据类属性分布信息引入有效信息比率,用于表征各离散区间内有效分类信息量.然后,依据离散化方案的离散区间数及其有效信息比率,设计出表征离散化方案划分质量的离散化评价指标,从而提高了数据的离散化效果.仿真实验和实际应用的结果表明,该算法离散化后在有效分类信息量和分类预测精度上高于主流基于信息论的离散化算法.