论文部分内容阅读
为理解地下水位观测信息在非饱和水流数据同化中的数据价值,建立了基于地下水位动态观测信息的一维饱和-非饱和水流集合卡尔曼滤波,通过虚拟数值实验检验了地下水位观测信息在非饱和水力参数估计和水分校正中的潜在价值。研究结果表明:在以地下水位为唯一观测数据时,同时更新参数和水头比仅更新水头能更好地校正土壤剖面的水头分布;当多层单个水力参数未知时,地下水位观测可以为参数估计提供有效信息;当多层多个参数未知时,地下水位与多层多个参数之间的复杂关系导致观测信息难以估计出最优的(唯一的)参数值;地下水位可作为辅助信息,与含