论文部分内容阅读
对设备性能指标、用户数据指标的异常检测能有效地发现系统潜在故障,本文提出了一种混合异常检测方法。该方法利用k-means将历史数据按照时间进行划分,使用grubbs算法剔除历史数据中的噪音,并计算各时间段的阈值形成动态阈值,同时利用曲线拟合和ARIMA算法对预处理后的历史数据进行训练,得到对应的模型,作为判断异常的依据。该方法结合了统计学的高效、机器学习的准确,无需对数据进行标注,该方法能自动发现单指标和多指标异常。通过在几个系统的实际运维的检验,本文提出的方法能有效地发现缺数异常和系统异常,提高告警准确