论文部分内容阅读
近红外光谱分析的重要内容之一是基于校正样品集建立光谱和化学成分或类别之间的回归模型。流形学习是一类新的机器学习方法,它能够揭示出复杂数据的本质维数,提取最重要的特征信息,并用于建立回归或分类模型。文章以近红外光谱为研究对象,针对近红外光谱数据维数高、谱带归属难以确定等特点,基于流形学习中局部线性嵌入(LLE)算法的思想,提出了一种最小二乘局部加权回归(LS-LWR)建模方法。最后,利用各种浓度葡萄糖溶液的近红外光谱,对该方法进行了验证。同时建立主成份回归(PCR)和偏最小二乘回归(PLSR)模型,通过计算