论文部分内容阅读
基于邻域广义模糊聚类算法能够分割含噪声灰度图像,但是如果图像灰度分布不均衡或者起始的聚类中心设置不合适仍会导致该算法分割失败,为此,提出一种基于混沌优化和改进模糊聚类算法相融合的图像分割算法.首先,将每一类的隶属度之和引入基于邻域广义模糊聚类算法的目标函数中,从而能够均衡较大类和较小类对目标函数的贡献.其次,以新目标函数为基础,利用拉格朗日乘子法推导出相应的隶属度和聚类中心.再次,将混沌优化和改进模糊聚类算法联合得到最优解,即最合适的聚类中心,细节上,每一代的聚类中心分别由混沌系统和改进模糊聚类算法