论文部分内容阅读
直接从三维弹性力学微分方程出发,依据三维的Kelvin解,应用最小二乘法建立了三维虚边界元法解薄壳问题的一般方法。本方法的显著优点是:不论求解何种壳体问题,方法的思想是不变的,均以三维的Kelvin解来建立方程,而勿需对不同几何形状的壳体采用不同的基本解。文中给出了数值算例,以作为本方法的应用。本文方法与边界元直接法相比,优点在于无需处理奇异积分,且系数阵是对称的;再者,本文方法思想简单,程序实现容易。