论文部分内容阅读
基于卷积神经网络的图像超分辨率重建方法具有很高的重建性能。但该类方法存在网络参数多、训练难度大,梯度消失和网络退化等问题。针对这些问题,提出一种基于对称残差卷积神经网络的图像超分辨率重建方法。通过将对称融入到残差块中,采用对称连接实现局部特征融合,提取尽可能多的有价值特征;残差块外采用跳跃连接实现全局特征融合,以提高图像的重建质量。该方法使用峰值信噪比和结构相似度作为评价指标,在Set5、Set14和BSD100标准数据集上进行2倍、3倍和4倍因子重建后的结果大部分优于比较方法,平均峰值信噪比和结构