论文部分内容阅读
为克服经典区域增长算法中生长规则以及特征选取的困难,提出了基于高斯混合模型的多区域并行区域增长图像分割算法。首先交互选择多个不同区域的种子点,并利用交互式选择的属于每个区域的子块得到混合模型的个数;然后利用最大期望估计混合模型参数作为区域增长的初始参数,并在增长过程中不停地调节模型参数。为了避免初始种子点位置选择对算法性能的影响,采用了多区域并行竞争增长策略。仿真实验获得了较好的分割效果,表明所提出的算法是合理可行的。