论文部分内容阅读
基于粗糙集理论定义的属性约简大都要求约简前后正区域保持不变或者非负区域不变.在概率型决策粗糙集模型下,决策区域和决策规则与属性增减之间并不具备单调性.因此,决策者基于约简后的属性集合所作的决策风险最小就变得非常有意义.针对这种与各个区域无关的基于决策风险最小化的属性约简进行了研究.考虑到不同属性对决策表的决策分类能力不同,提出了基于决策粗糙集模型的属性重要性概念,设计了一种有效的基于属性重要性的决策风险最小化启发式属性约简算法.实例分析与对比实验结果说明新方法是有效的.