论文部分内容阅读
利用单幅CT图像进行肺部节结的识别存在较大的局限性,故把多幅相邻图像组成的短图像序列引入自动识别的过程,并根据节结的球形结构,把节结感兴趣区域(ROI)对应的原始图像看做是二维函数的三维表面,提取不同于传统图像区域特征的刻画三维表面形状且反映节结在短图像序列中变化情况的新型特征。最后用支持向量机(SVM)进行分类实验,验证了所提取特征的有效性。