论文部分内容阅读
为解决城市用水量预测中单一方法预测精度不高的问题,建立了灰色径向基(RBF)神经网络组合模型。对比实验结果表明,灰色GM(1,1)模型、RBF神经网络模型和灰色RBF神经网络组合模型的平均相对误差分别为2.1222%,1.2562%和0.6821%。与灰色GM(1,1)模型和RBF神经网络相比,灰色RBF神经网络组合模型充分发挥了灰色系统的贫乏数据建模和RBF神经网络的高度非线性映射能力的双重优势,具有较高的预测精度,更适合用于城市用水量预测。