论文部分内容阅读
通过建立一个新的极大值原理,讨论Sturm-Liouville边值问题{-(p(t)u′(t))′+q(t)u(t)=f(t,u),t∈I,R1(u)=α0u(0)-β0p(0)u′(0)=0,R2(u)=α1u(1)+β1p(1)u′(1)=0解的存在性.其中f:I×R→R为Caratheodory函数。在不限制f关于u的增长阶,不假定f关于u的单调性的一般情形下,用上下解方法讨论Sturm-Liouville问题解的存在性。