论文部分内容阅读
TiO2 nanotube(TNT) arrays were fabricated by anodic oxidation of titanium foil in a fluoridebased solution, on which Cu2O particles were loaded via galvanostatic pulse electrodeposition in cupric acetate solutions in the absence of any other additives. The structure and optical properties of Cu2O-loaded TiO2 nanotube arrays(Cu2O-TNTs) were analyzed by scanning electron microscopy(SEM), X-ray diffraction(XRD) and UV-Vis absorption, and the photoelectrochemical performance was measured using an electrochemical work station with a three-electrode configuration. The results show that the Cu2O particles distribute uniformly on the highly ordered anatase TiO2 nanotube arrays. The morphologies of Cu2O crystals change from branched, truncated octahedrons to dispersive single octahedrons with increasing deposition current densities. The Cu2O TNTs exhibited remarkable visible light responses with obvious visible light absorption and greatly enhanced visible light photoelectrochemical performance. The I-V characteristics under visible light irradiation show a distinct plateau in the region between approximately -0.3 and 0 V, resulting in higher open-circuit voltages and larger short-circuit currents with increased Cu2O deposition.
TiO2 nanotube (TNT) arrays were fabricated by anodic oxidation of titanium foil in a fluoride-based solution, on which Cu2O particles were loaded via galvanostatic pulse electrodeposition in cupric acetate solutions in the absence of any other additives. The structure and optical properties of Cu2O-loaded The nanotube arrays (Cu2O-TNTs) were analyzed by scanning electron microscopy (SEM), X-ray diffraction (XRD) and UV-Vis absorption, and the photoelectrochemical performance was measured using an electrochemical work station with a three-electrode configuration. results show that the Cu2O particles distribute uniformly on the highly ordered anatase TiO2 nanotube arrays. The morphologies of Cu2O crystals change from branched, truncated octahedrons to dispersive single octahedrons with increasing deposition current densities. The Cu2O TNTs shows remarkable visible light responses with obvious visible light absorption and greatly enhanced visible light photoelectrochemical performance The I-V characteristics under visible light irradiation show a distinct plateau in the region between approximately -0.3 and 0 V, resulting in higher open-circuit voltages and larger short-circuit currents with increased Cu2O deposition.