论文部分内容阅读
特征具有高维、稀疏性。为提高了文本自动分类准确率,针对PCA提取特征需要对大规模文本进行批处理,影响文本的准确率等,提出一种基于增量主元分析方法(CCIPCA)和最二小乘向量机(LSSVM)相结合的文本自动分类算法(CCIPCA—LSSVM)。首先通过互信法选择文本特征,然后采用CCIPCA高维文本特征进行提取,降低特征维数,消除冗余特征,最后采用LSSVM对提取特征进行学习,并通过粒子群算法对分类器优化,建立最优文本自动分类模型。仿真结果表明,相对于其它文本分类算法,CCIPCA—LSSVM提高了文本分