论文部分内容阅读
随着电子技术的发展以及国内数控装置的普及使得数控装置的价格持续走低,特别是经济型数控车系统的价格已经是到达了它的最低点。经济型数控车床在职业技术教育行业中得到了迅速普及,使得我国机械加工技能培训水平逐步提高,无论在加工质量方面还是在加工效率方面也得到了迅速提高。但是随着机床使用时间的延长,数控机床会出现这样或那样的故障,本文就以经济型数控机床的常见故障为例,谈了一些解决的办法。
简易数控车床又叫经济型数控车床,是在普通车床的基础上发展起来的,其自动控制系统主要由单片机构成,通过控制程序,控制机床的纵向及横向进给装置及换刀装置,自动完成零件的加工。所以,简易数控车床仍是机电一体化设备,因而在出现故障时也要从机床的机械结构和电气控制两个方面综合分析。
1. 程序运行后步进电机抖动不转 这一现象一般是步进电机或其控制系统断相造成的。有可能是步进电机本身故障也可能是其驱动电路故障。首先检查步进电机的连接插头是否接触良好,若接触良好,可将没有故障的电机调换过来,以便验证电机是否良好。若调换电机后仍不能正常工作,则说明其控制部分不正常,可重点检查驱动板上的大功率三极管及其保护元件释放二极管,一般情况下,这两个元件较易损坏。
2. 程序运行中工作台突然停止 这一现象一般是由机械故障引起的,但也可能是控制系统发生故障造成的。这时可先将工作台退回原点,重新启动加工程序,若工作台总是运行到某一位置时停止,应该是传动系统的某一部位损坏、变形或被异物卡住等。首先断电,然后检查丝母与丝杠间隙或溜板镶条是否太紧、滚珠丝杠的滚珠导槽内有无异物、丝杠有无弯曲变形、步进电机减速器内柔性齿轮是否松动或异物卡住等。若手动盘车没有异常,则是控制系统故障,应按照故障1进行检查。
3. 高速时步进电机丢步 可能是驱动电源电压降低,使步进电机输出转矩减小。应重点检查驱动电源部分,当高压开关三极管损坏后,高压电源天法接通,高速时步进电机输出转矩减少而丢步。也可能某处机械故障,所以还应检查丝杠、丝母、溜板、步进电机减速器等处。当有部件弯曲、变形、或有异物时会使运行阻力增大,低速运行时现象不明显,但高速时则不能完全克服运行阻力。
4. 程序运行结束刀具不回零点 一般是控制系统故障。刀具在进给或在加工时,步进电机运转速度较低,而程序回零点时,则要求快速退回。步进电机高速运行,采用高压驱动电源,以使输出转矩增大。控制高压驱动电源输出的有一开关三极管,当开关三极管损坏后,高速回零点时高压电源打不开,步进电机输出转矩不够,致使刀具不回到零点。更换开关三极管即可消除。
5. 刀具返回零点时越位 一般是机械传动系统运行阻力太大引起。切削进给时,刀架低速运行,低电压驱动,步进电机运转转矩小,不足以克服阻力造成丢步。而回零时步进电机高压驱动,运行速度高、转矩大,又没有切削阻力,步进电机不丢步。这样去时丢步而返回时正常就会造成不回零现象。这时可检查步进电机减速箱内传动齿轮或步进电机与丝杠之间传动齿轮上有无铁屑异物,或溜板镶条是否太紧使运行阻力增大等。
6. 加工后的工件尺寸误差很大 一种可能是丝杠或丝母与车床连接松动。空走时没有吃刀阻力,溜板运行正常,加工时由于切削阻力增大,丝杠或丝母与车床连接处松动,造成加工工件尺寸漂移。紧固连接部分,故障即可消除。另一种可能是电动刀架造成。如果换刀后刀架不能自动锁紧,切削时刀具偏离加工点,也会造成上述现象。这时应检查刀架锁紧装置及刀架控制箱。
7. 工件局部尺寸误差大 主要是丝母与丝杠间间隙过大所致。由于丝母与丝杠长期在某一段运行,使该段的间隙增大。程序开始时,测定的丝杠间隙被补偿到程序里,但在磨损段无法补偿,以致工件局部尺寸超差。解决的办法是修理或更换丝杠。
8. 电动刀架换刀时不能定位且旋转不止 这是由于当程序要某号刀时,电动刀架正在转选刀具,当旋转到该号刀具时,没有应答信号,从而使刀架旋转不止,不能定位。应检查电动刀架上的霍尔元件。霍尔元件损坏时,会使所要刀具到位时,没有检测到信号输出,从而造成上述现象。更换该号刀的霍尔元件即可。
9. 程序执行过程中返回监控状态且工作停止 一般是监控程序出现故障或是强磁干扰引起。对于强磁干扰可采用接地或屏蔽的办法解决。若不按程序执行或启动程序时不按执行指令,立即返回监控状态,一般是监控程序或计算机硬件出现故障,可更换可疑芯片,如片外程序存储器芯片、可编程接口芯片或单片机本身。有时片外数据存储器故障也能引起此现象。否则只好找生产厂家重新调试。
10. 加工程序经常丢失 若控制系统断电后加工程序丢失,而机床上电后重新输入加工程序,机床可以正常加工,则可能是备用电池电压降低或断开,造成数据存储器中的加工程序在机床断电后无法保持而丢失。更换备用电池即可。若加工程序在加工过程中经常部分或全部丢失,则极有可能是数据存储器故障,这时可更换片外数据存储器或单片机本身。
总之,数控车床由机械和电气两部分组成,出现故障后要从机械和电气两个方面进行分析,判断出是机械故障还是电气故障,再深入分析找出故障点,对于学校来说,一般不会大批量的购进该种类型的设备,但是在实践教学环节又依赖设备的可靠性,所以,对于实习教师掌握基本的维修技能可以保证实习教学的正常顺利的开展。
简易数控车床又叫经济型数控车床,是在普通车床的基础上发展起来的,其自动控制系统主要由单片机构成,通过控制程序,控制机床的纵向及横向进给装置及换刀装置,自动完成零件的加工。所以,简易数控车床仍是机电一体化设备,因而在出现故障时也要从机床的机械结构和电气控制两个方面综合分析。
1. 程序运行后步进电机抖动不转 这一现象一般是步进电机或其控制系统断相造成的。有可能是步进电机本身故障也可能是其驱动电路故障。首先检查步进电机的连接插头是否接触良好,若接触良好,可将没有故障的电机调换过来,以便验证电机是否良好。若调换电机后仍不能正常工作,则说明其控制部分不正常,可重点检查驱动板上的大功率三极管及其保护元件释放二极管,一般情况下,这两个元件较易损坏。
2. 程序运行中工作台突然停止 这一现象一般是由机械故障引起的,但也可能是控制系统发生故障造成的。这时可先将工作台退回原点,重新启动加工程序,若工作台总是运行到某一位置时停止,应该是传动系统的某一部位损坏、变形或被异物卡住等。首先断电,然后检查丝母与丝杠间隙或溜板镶条是否太紧、滚珠丝杠的滚珠导槽内有无异物、丝杠有无弯曲变形、步进电机减速器内柔性齿轮是否松动或异物卡住等。若手动盘车没有异常,则是控制系统故障,应按照故障1进行检查。
3. 高速时步进电机丢步 可能是驱动电源电压降低,使步进电机输出转矩减小。应重点检查驱动电源部分,当高压开关三极管损坏后,高压电源天法接通,高速时步进电机输出转矩减少而丢步。也可能某处机械故障,所以还应检查丝杠、丝母、溜板、步进电机减速器等处。当有部件弯曲、变形、或有异物时会使运行阻力增大,低速运行时现象不明显,但高速时则不能完全克服运行阻力。
4. 程序运行结束刀具不回零点 一般是控制系统故障。刀具在进给或在加工时,步进电机运转速度较低,而程序回零点时,则要求快速退回。步进电机高速运行,采用高压驱动电源,以使输出转矩增大。控制高压驱动电源输出的有一开关三极管,当开关三极管损坏后,高速回零点时高压电源打不开,步进电机输出转矩不够,致使刀具不回到零点。更换开关三极管即可消除。
5. 刀具返回零点时越位 一般是机械传动系统运行阻力太大引起。切削进给时,刀架低速运行,低电压驱动,步进电机运转转矩小,不足以克服阻力造成丢步。而回零时步进电机高压驱动,运行速度高、转矩大,又没有切削阻力,步进电机不丢步。这样去时丢步而返回时正常就会造成不回零现象。这时可检查步进电机减速箱内传动齿轮或步进电机与丝杠之间传动齿轮上有无铁屑异物,或溜板镶条是否太紧使运行阻力增大等。
6. 加工后的工件尺寸误差很大 一种可能是丝杠或丝母与车床连接松动。空走时没有吃刀阻力,溜板运行正常,加工时由于切削阻力增大,丝杠或丝母与车床连接处松动,造成加工工件尺寸漂移。紧固连接部分,故障即可消除。另一种可能是电动刀架造成。如果换刀后刀架不能自动锁紧,切削时刀具偏离加工点,也会造成上述现象。这时应检查刀架锁紧装置及刀架控制箱。
7. 工件局部尺寸误差大 主要是丝母与丝杠间间隙过大所致。由于丝母与丝杠长期在某一段运行,使该段的间隙增大。程序开始时,测定的丝杠间隙被补偿到程序里,但在磨损段无法补偿,以致工件局部尺寸超差。解决的办法是修理或更换丝杠。
8. 电动刀架换刀时不能定位且旋转不止 这是由于当程序要某号刀时,电动刀架正在转选刀具,当旋转到该号刀具时,没有应答信号,从而使刀架旋转不止,不能定位。应检查电动刀架上的霍尔元件。霍尔元件损坏时,会使所要刀具到位时,没有检测到信号输出,从而造成上述现象。更换该号刀的霍尔元件即可。
9. 程序执行过程中返回监控状态且工作停止 一般是监控程序出现故障或是强磁干扰引起。对于强磁干扰可采用接地或屏蔽的办法解决。若不按程序执行或启动程序时不按执行指令,立即返回监控状态,一般是监控程序或计算机硬件出现故障,可更换可疑芯片,如片外程序存储器芯片、可编程接口芯片或单片机本身。有时片外数据存储器故障也能引起此现象。否则只好找生产厂家重新调试。
10. 加工程序经常丢失 若控制系统断电后加工程序丢失,而机床上电后重新输入加工程序,机床可以正常加工,则可能是备用电池电压降低或断开,造成数据存储器中的加工程序在机床断电后无法保持而丢失。更换备用电池即可。若加工程序在加工过程中经常部分或全部丢失,则极有可能是数据存储器故障,这时可更换片外数据存储器或单片机本身。
总之,数控车床由机械和电气两部分组成,出现故障后要从机械和电气两个方面进行分析,判断出是机械故障还是电气故障,再深入分析找出故障点,对于学校来说,一般不会大批量的购进该种类型的设备,但是在实践教学环节又依赖设备的可靠性,所以,对于实习教师掌握基本的维修技能可以保证实习教学的正常顺利的开展。