论文部分内容阅读
人脸识别领域中常用Gabor小波系数表示人脸特征.然而,提取的人脸Gabor特征是高维数据,不可避免存在冗余和随机噪声的干扰.为了有效利用Gabor特征进行人脸识别,提出一种新的Gabor特征选取方法.首先计算训练集上的任两张人脸图像的Gabor特征差,生成类内空间和类外空间.用单个Gabor特征训练简单两值分类器,以其在类内空间和类外空间的分类错误率作为判据评价该Gabor特征的分类能力.在选取分类错误低的特征的同时还要再评估候选特征与已选特征间的互信息,这样优选出具有无冗余、低误差率的特征.最后