论文部分内容阅读
将Fahinsen等提出的多维模态理论应用到求解圆柱贮箱液体非线性晃动问题中.根据Narimanov-Moiseiev的三阶渐近假设关系,通过选取主导模态以及确定它们的阶次关系,将一般形式的无穷维模态系统降为五维渐近模态系统,即描述自由液面波高的广义坐标之间相互耦合的二阶非线性常微分方程组.通过对这个模态系统的数值积分,得到了与以前的理论分析和实验结果相吻合的非线性现象.研究结果表明,多维模态方法是用来求解液体非线性晃动动力学的一个很好的工具.在我们的下一步工作中,将继续发展这种方法,用来研究更为复杂的晃