论文部分内容阅读
作为通信的主要方式,无线通信产生了极具价值的频谱大数据。而机器学习作为新兴的智能算法,可以挖掘出频谱大数据中的有用信息,作出正确的频谱预测和决策,以提高频谱资源的利用率。对机器学习和频谱大数据进行了简要介绍;结合频谱大数据的四大特点,讨论了用于频谱大数据分析的4种机器学习方法——分布并行学习、极速学习机、核学习、深度学习;又以频谱大数据的智能预测和决策为目的,讨论了用于频谱大数据处理的两种机器学习方法——强化学习、博弈学习;最后对机器学习方法在频谱大数据上的应用前景进行了展望。