论文部分内容阅读
随着嵌入式密码设备的广泛应用,侧信道分析(side channel analysis,SCA)成为其安全威胁之一。通过对密码算法物理实现过程中的泄露信息进行分析实现密钥恢复,进而对密码算法实现的安全性进行评估。为了精简用于能量分析的多层感知器(multi-layer perceptron,MLP)网络结构,减少模型的训练参数和训练时间,针对基于汉明重量(HW)和基于比特的MLP神经网络的模型进行了研究,输出类别由256分类分别减少为9分类和2分类;通过采集AES密码算法运行过程中的能量曲线对所提出的