论文部分内容阅读
针对竞争层中存在的容易陷入局部极小、可能丢弃局部较理想的神经元问题,提出了增加/删除竞争神经元的神经网络。它采用基于Hebbian假设的非监督学习算法对网络行为进行学习,并根据相似度确定奖励和惩罚的等级。在学习过程中根据需要增加神经元以形成新的聚类,在学习结束后删除错误的聚类,从而避免了死神经元问题,使聚类更加准确。