论文部分内容阅读
Polycaprolactone/multi-walled carbon nanotubes nano composite (PCL/MWCNT) was synthesized by a one-pot process with microwave-assistance. The fractured structures, crystalline behaviors and thermal properties of the nanocomposites were investigated with an electronic microscope, an X-ray diffraction device, an infrared spectroscopy, and a differential scanning calorimeter, respectively. A universal testing machine was used to study the mechanical properties of the composites. The results showed that when the content of MWCNT was 0.3 % (m/m), the tensile strength and elongation at break reached the maximum values, and increased from 7.5 MPa and 125 % of neat PCL to 14.8 MPa and 387 %, respectively. With an increase of the MWCNT content, the Young’s modulus continuously increased from 121.5 MPa of PCL to 285.6 MPa. When the MWCNT content was 0.5 % (m/m), the Young’s modulus was ca. 1.4 fold over that of neat PCL, indicating that the addition of MWCNT resulted in simultaneous enhancement of strength, toughness and modulus remarkably.
Poly fractrolactone / multi-walled carbon nanotubes nano composite (PCL / MWCNT) was synthesized by a one-pot process with microwave-assistance. The fractured structures, crystalline behaviors and thermal properties of the nanocomposites were investigated with an electronic microscope, an X-ray A universal testing machine was used to study the mechanical properties of the composites. The results showed that when the content of MWCNT was 0.3% (m / m), the tensile strength and elongation at break reached the maximum values, and increased from 7.5 MPa and 125% of neat PCL to 14.8 MPa and 387%, respectively. With an increase of the MWCNT content, the Young’s modulus continuously increased from 121.5 MPa of PCL to 285.6 MPa. When the MWCNT content was 0.5% (m / m), the Young’s modulus was ca. 1.4 fold over that of neat PCL, indicating that the addition of MWCNT derivative in simultaneous enhancement of strength, toughness and modulus remarkably.