论文部分内容阅读
半监督学习中当未标注样本与标注样本分布不同时,将导致分类器偏离目标数据的主题,降低分类器的正确性.文中采用迁移学习技术,提出一种TranCo—Training分类模型.每次迭代,根据每个未标注样本与其近邻标注样本的分类一致性计算其迁移能力,并根据迁移能力从辅助数据集向目标数据集迁移实例.理论分析表明,辅助样本的迁移能力与其训练错误损失成反比,该方法能将训练错误损失最小化,避免负迁移,从而解决半监督学习中的主题偏离问题.实验表明,TranCo-Training优于随机选择未标注样本的RdCo-Trainin