面向无人艇环境感知的改进型SSD目标检测方法

来源 :仪器仪表学报 | 被引量 : 0次 | 上传用户:av437556057
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
为了提升无人艇对典型水面小目标感知能力,本文提出了基于多尺度卷积融合结构和空间注意力加强的改进型SSD目标检测算法.首先,对SSD浅层网络进行多尺度卷积融合,提升浅层网络的语义信息;其次,设计空间注意力结构对卷积特征层逐个增强,提升对弱纹理小目标特征保持性;最后,在VOC公开数据集和自构水面目标数据集上进行了测试,并基于无人艇开展了真实海域目标检测识别验证.实验结果表明,该算法在无人艇Nvidia平台的运行效率可达15 fps,能准确检测识别浮标、桥墩、渔船、快艇和货船等目标,在典型海面场景虚警率为5%时的小目标检测率相对原生SSD算法提升近20.2%,平均有效检测率达到79.3%.
其他文献
无人平台在大范围环境中实现自主定位与导航的能力需求日益严苛,其中基于激光雷达的同步定位和绘图技术(SLAM)是主流的研究方案.在这项工作中,本文系统概述了3D激光雷达SLAM算法框架和关键模块,分析阐述了近年来的研究热点问题和未来发展趋势,梳理了3D激光雷达SLAM算法性能的评估标准,并据此选取目前较为成熟的具有代表性的6种开源3D激光雷达SLAM算法在机器人操作系统(ROS)中进行了测试评估,基于KITTI基准数据集,从KITTI官方精度标准、SLAM算法精度指标、算法耗时和处理帧率3方面进行了横向比较