论文部分内容阅读
摘要:本文将提出一种含超薄金属内衬轻量化复合材料压力容器的设计与制备技术,并对于该技术的具体设计与制备应用进行分析论述。
关键词:超薄;金属内衬;轻量化;复合材料;压力容器;设计制备;研究
近年来,随着新技术以及新设备的不断发展与应用,工业生产与加工制造中对于携带液体燃料以及高压气体的压力容器提出了高气密、轻质量以及长寿命等更高的设计与制造要求,使得高结构效率的轻量化复合材料压力容器成为一个热点问题。下文将结合这一背景条件,根据带金属内衬复合材料压力容器中内衬的作用以及复合材料结构层进行承担荷载的特征,提出一种含超薄金属内衬轻量化复合材料压力容器的设计与制备技术,具体报道如下。
1.复合材料结构层的刚度优化设计方法分析
进行含超薄金属内衬轻量化复合材料压力容器的设计与制备实现,主要就是以减薄金属内衬的厚度和实现复合材料结构层的刚度优化为主,以实现超薄、轻量化、高强复合材料结构层刚度的设计与制备目的。首先,在进行复合材料结构层的刚度优化设计中,本文主要采用一种基于稳定缠绕理论的结构刚度优化设计方法,对于复合材料结构层的刚度实现优化设计。工业生产与加工制造中,对于复合材料压力容器的结构层刚度优化设计,多是使用网格理论进行复合材料压力容器强度设计实现的,它主要应用经验进行滑线系数取值确定后,通常对于一般湿法缠绕取值多为0.15到0.2之间,而干法缠绕取值多为0.39,然后应用公式对于可缠绕范围进行求解,并给定初始缠绕角,通过在缠绕机上进行大量的工艺试验后,对于初始缠绕角进行排线修改,以找出能够满足缠绕工艺稳定性要求的线型和缠绕角,最终根据这个缠绕角进行设计制备压力容器的刚度校核,以完成对于复合材料压力容器的结构刚度优化设计。
(1)
上述公式(1)中,a表示的是缠绕角,λ表示的是滑线系数,r表示的是芯模母线方程, 、 表示的是芯模母线方程的一阶和二阶导数,其中 。
上文所述的这种基于试错试验的复合材料结构层刚度优化设计方式,在优化设计过程中,难以对实际的稳定缠绕范围进行获取,因此也就无法进行复合材料压力容器结构的刚度优化实现,在实际设计制造中就不能够最大化的实现纤维强度发挥,难以实现复合材料压力容器减重与轻量化的目的。
根据这种设计方法的缺陷与局限性,本文通过进行一种基于稳定缠绕理论的结构刚度优化设计方法的设计构建,来实现对于复合材料压力容器的结构刚度优化设计。基于稳定缠绕理论的结构刚度优化设计,主要通过对缠绕纤维和芯模表面间滑线系数的精确表征,对于真实可靠的滑线系数进行测量求得,同时在获取滑线系数和缠绕角的连续对应关系后,通过上述公式(1)对于可稳定缠绕范围进行准确求得,同时通过对于可稳定缠绕范围内每一缠绕角对应的纤维轨迹厚度、刚度等进行预测计算,以实现在稳定缠绕范围内,对于复合材料压力容器结构刚度的优化设计,使得复合材料结构能够最大效率的发挥纤维强度,提高结构效率,实现复合材料压力容器设计制备中减重与轻量化的目的。
在基于稳定缠绕理论的结构刚度优化设计方法中,对于缠绕纤维以及芯模表面间滑线系数的精确表征以及可稳定缠绕范围的求解实现,主要是根据一般曲面稳定缠绕原理,通过对芯模表面上落纱点的力学分析,在进行一种具有自主知识产权标定模型设计基础上,实现对于缠绕纤维以及芯模表面间滑线系数的精确表征和可稳定缠绕范围求解。值得注意的是,设计建立的具有自主知识产权的标定模型,在固定缠绕角情况下,沿其母线方向任意点的纬度圆半径和该点的滑线系数之间满足线性关系。其中,该模型的母线方程为下式(2)所示。
(2)
在上示公式中,R表示芯模直线段处的半径,C是一个常数。通过该标定模型能够精确对于缠绕纤维和芯模表面间滑线系数值进行表征,能够为稳定缠绕范围以及复合材料压力容器结构刚度优化进行参数提供。
2.大尺寸超薄金属内衬的成型设计方法分析
本文主要以铝合金材料为主,对于大尺寸超薄铝合金内衬的设计成型方法进行分析。在压力容器设计制造中,由于铝合金材料本身具有气密性高以及密度小、介质相容性突出等特征优势,是轻量化复合材料压力容器设计制备中金属内衬的首先材料,并且该材料在压力容器的整个设计制备中占有比例达到1/3以上。此外,应用铝合金作为金属内衬材料进行轻量化复合材料压力容器设计制备中,如果铝合金的内衬厚度每减薄0.1毫米,复合材料压力容器的重量将减轻3%到6%,能够满足材料压力容器设计制备中实现减重的目的。
由于轻量化复合材料压力容器直径的越来越大,实现大尺寸超薄铝合金内衬的成型设计具有较为突出的难度。针对这一情况,通过在封头部分使用旋压工艺,然后与筒身进行焊接成型的设计制备方法,实现大尺寸超薄铝合金内衬的成型设计,制备出了封头和筒身厚度在0.8毫米以下,直径在745毫米以上的系列超薄铝合金内衬,很好的满足和实现了轻量化复合材料压力容器设计与制备。
在进行含超薄金属内衬轻量化复合材料压力容器设计制备中,完成减薄金属内衬厚度与复合材料结构层的刚度优化设计后,要想完整的实现对于含超薄金属内衬轻量化复合材料压力容器的设计制备,还需要进行超波金属内衬和复合材料变形的协调控制,同时对于轻量化复合材料压力容器的设计制备进行自动修复,以保证设计制备质量和效果。
3.结束语
总之,含超薄金属内衬轻量化复合材料压力容器的设计制备实现,能够满足压力容器设计制备的高气密以及轻质量、长寿命的要求,对于推动压力容器设计制备技术水平的发展提升有着积极作用和意义。
参考文献:
[1]王霞,宋文轩.大型煤制甲醇装置压力容器的设计与制造研究[J].化学工业.2010(9).
[2]刘志栋,于斌,王小永,俞树荣.航空用球形金属内衬复合材料气瓶研制[J].玻璃钢/复合材料.2012(3).
作者简介:张娟(1989-),女,汉族,陕西神木人,内蒙古工业大学化工学院硕士研究生,从事压力容器复合材料研究。
关键词:超薄;金属内衬;轻量化;复合材料;压力容器;设计制备;研究
近年来,随着新技术以及新设备的不断发展与应用,工业生产与加工制造中对于携带液体燃料以及高压气体的压力容器提出了高气密、轻质量以及长寿命等更高的设计与制造要求,使得高结构效率的轻量化复合材料压力容器成为一个热点问题。下文将结合这一背景条件,根据带金属内衬复合材料压力容器中内衬的作用以及复合材料结构层进行承担荷载的特征,提出一种含超薄金属内衬轻量化复合材料压力容器的设计与制备技术,具体报道如下。
1.复合材料结构层的刚度优化设计方法分析
进行含超薄金属内衬轻量化复合材料压力容器的设计与制备实现,主要就是以减薄金属内衬的厚度和实现复合材料结构层的刚度优化为主,以实现超薄、轻量化、高强复合材料结构层刚度的设计与制备目的。首先,在进行复合材料结构层的刚度优化设计中,本文主要采用一种基于稳定缠绕理论的结构刚度优化设计方法,对于复合材料结构层的刚度实现优化设计。工业生产与加工制造中,对于复合材料压力容器的结构层刚度优化设计,多是使用网格理论进行复合材料压力容器强度设计实现的,它主要应用经验进行滑线系数取值确定后,通常对于一般湿法缠绕取值多为0.15到0.2之间,而干法缠绕取值多为0.39,然后应用公式对于可缠绕范围进行求解,并给定初始缠绕角,通过在缠绕机上进行大量的工艺试验后,对于初始缠绕角进行排线修改,以找出能够满足缠绕工艺稳定性要求的线型和缠绕角,最终根据这个缠绕角进行设计制备压力容器的刚度校核,以完成对于复合材料压力容器的结构刚度优化设计。
(1)
上述公式(1)中,a表示的是缠绕角,λ表示的是滑线系数,r表示的是芯模母线方程, 、 表示的是芯模母线方程的一阶和二阶导数,其中 。
上文所述的这种基于试错试验的复合材料结构层刚度优化设计方式,在优化设计过程中,难以对实际的稳定缠绕范围进行获取,因此也就无法进行复合材料压力容器结构的刚度优化实现,在实际设计制造中就不能够最大化的实现纤维强度发挥,难以实现复合材料压力容器减重与轻量化的目的。
根据这种设计方法的缺陷与局限性,本文通过进行一种基于稳定缠绕理论的结构刚度优化设计方法的设计构建,来实现对于复合材料压力容器的结构刚度优化设计。基于稳定缠绕理论的结构刚度优化设计,主要通过对缠绕纤维和芯模表面间滑线系数的精确表征,对于真实可靠的滑线系数进行测量求得,同时在获取滑线系数和缠绕角的连续对应关系后,通过上述公式(1)对于可稳定缠绕范围进行准确求得,同时通过对于可稳定缠绕范围内每一缠绕角对应的纤维轨迹厚度、刚度等进行预测计算,以实现在稳定缠绕范围内,对于复合材料压力容器结构刚度的优化设计,使得复合材料结构能够最大效率的发挥纤维强度,提高结构效率,实现复合材料压力容器设计制备中减重与轻量化的目的。
在基于稳定缠绕理论的结构刚度优化设计方法中,对于缠绕纤维以及芯模表面间滑线系数的精确表征以及可稳定缠绕范围的求解实现,主要是根据一般曲面稳定缠绕原理,通过对芯模表面上落纱点的力学分析,在进行一种具有自主知识产权标定模型设计基础上,实现对于缠绕纤维以及芯模表面间滑线系数的精确表征和可稳定缠绕范围求解。值得注意的是,设计建立的具有自主知识产权的标定模型,在固定缠绕角情况下,沿其母线方向任意点的纬度圆半径和该点的滑线系数之间满足线性关系。其中,该模型的母线方程为下式(2)所示。
(2)
在上示公式中,R表示芯模直线段处的半径,C是一个常数。通过该标定模型能够精确对于缠绕纤维和芯模表面间滑线系数值进行表征,能够为稳定缠绕范围以及复合材料压力容器结构刚度优化进行参数提供。
2.大尺寸超薄金属内衬的成型设计方法分析
本文主要以铝合金材料为主,对于大尺寸超薄铝合金内衬的设计成型方法进行分析。在压力容器设计制造中,由于铝合金材料本身具有气密性高以及密度小、介质相容性突出等特征优势,是轻量化复合材料压力容器设计制备中金属内衬的首先材料,并且该材料在压力容器的整个设计制备中占有比例达到1/3以上。此外,应用铝合金作为金属内衬材料进行轻量化复合材料压力容器设计制备中,如果铝合金的内衬厚度每减薄0.1毫米,复合材料压力容器的重量将减轻3%到6%,能够满足材料压力容器设计制备中实现减重的目的。
由于轻量化复合材料压力容器直径的越来越大,实现大尺寸超薄铝合金内衬的成型设计具有较为突出的难度。针对这一情况,通过在封头部分使用旋压工艺,然后与筒身进行焊接成型的设计制备方法,实现大尺寸超薄铝合金内衬的成型设计,制备出了封头和筒身厚度在0.8毫米以下,直径在745毫米以上的系列超薄铝合金内衬,很好的满足和实现了轻量化复合材料压力容器设计与制备。
在进行含超薄金属内衬轻量化复合材料压力容器设计制备中,完成减薄金属内衬厚度与复合材料结构层的刚度优化设计后,要想完整的实现对于含超薄金属内衬轻量化复合材料压力容器的设计制备,还需要进行超波金属内衬和复合材料变形的协调控制,同时对于轻量化复合材料压力容器的设计制备进行自动修复,以保证设计制备质量和效果。
3.结束语
总之,含超薄金属内衬轻量化复合材料压力容器的设计制备实现,能够满足压力容器设计制备的高气密以及轻质量、长寿命的要求,对于推动压力容器设计制备技术水平的发展提升有着积极作用和意义。
参考文献:
[1]王霞,宋文轩.大型煤制甲醇装置压力容器的设计与制造研究[J].化学工业.2010(9).
[2]刘志栋,于斌,王小永,俞树荣.航空用球形金属内衬复合材料气瓶研制[J].玻璃钢/复合材料.2012(3).
作者简介:张娟(1989-),女,汉族,陕西神木人,内蒙古工业大学化工学院硕士研究生,从事压力容器复合材料研究。