论文部分内容阅读
害虫的发生是非线性动态系统,影响害虫发生的预测因子众多,且存在一定相关性,用神经网络进行预测时,不利于设计与计算。结合因子分析与神经网络的原理,建立基于因子分析与神经网络组合的害虫预测模型,通过因子分析对预测因子进行降维处理,然后将降维后的数据作为网络的输入,经训练后仿真输出预测结果。通过对山东郓城县二代棉铃虫预测的实例分析,证明新模型的预测精度没有降低,网络的收敛速度加快,预测值的误差减小。说明这一模型在农作物的病虫害预测方面有着广阔的应用前景。