论文部分内容阅读
研究水下自航行器(AUV)外形及水动力性能优化的问题,为使得AUV具有较小航行阻力的同时拥有较大承载能力,需要不断进行AUV模型重建以及水动力结果分析,人工完成将会耗时很长,Isight多学科优化设计平台搭载常用的优化算法—NSGA-II遗传算法,整合Solidworks、Gambit、Fluent三大集成模块实现数据交换以进行AUV外形的建模、仿真并完成设计过程的自动化和智能的设计探索,确定最佳设计参数;仿真结果表明,最终优化后的AUV不仅减小了航行阻力并且拥有更大的承载能力;因此采用多学科优化软件Is