论文部分内容阅读
为了提高虹膜图像分类的准确性和稳定性,提出了一种基于最小最大概率机的虹膜图像分类方法.该方法通过控制错分概率实现分类的最大化,将一般的二维分类问题扩展到虹膜特征的多维空间,并利用最小最大概率机的高维映射泛化特性,实现了不同核函数下的虹膜图像多维分类问题,具有分类准确率高、稳定性好的特点.通过虹膜图像库的实验验证表明,该方法在保持分类稳定性的同时,获得了径向基核函数高达98.55%的分类率,该分类率比最近特征线方法和相异度函数方法的分类率分别提高了4.47%和6.41%.