双机器人协同控制研究综述

来源 :计算机系统应用 | 被引量 : 0次 | 上传用户:Wayne_poplar
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
多机器人协同是未来机器人研究的一大热点,双机器人系统是其中的一个典型代表.针对目前双机器人协同系统的特性及常见应用,从动力学模型的建立、轨迹规划和协同控制等3方面介绍了双机器人协同系统的研究内容,分析各方面目前存在的技术漏洞和技术难点,指出未来发展的方向.
其他文献
随着信息共享时代的发展,海量数据的诞生对推荐系统提出了更高的要求.针对微博的海量数据,提出了一种融合朴素贝叶斯分类和基于用户的协同过滤算法的混合推荐算法.该算法将文本关键字作为特征属性,利用贝叶斯分类法筛选出用户可能感兴趣的数据,缩小推荐结果集;然后采用基于用户的协同过滤算法,通过计算用户相似度,根据最近邻居得到推荐结果列表.实验结果表明,混合推荐算法相比较于单一的推荐算法有着更高的准确率.
随着计算机视觉和自然语言处理的日益发展,视觉问答也发展为计算机科学领域的一个重要研究方向.视觉问答需要跨模态的理解与推理能力(图像与文本).由于图中节点和边的高度相关性以及图本身的联通性,图在提高视觉问答模型的推理能力上有一定的潜力,因此提出了一种基于图卷积网络的视觉问答方法.首先使用神经网络分别提取图像和文本特征,再用图处理模块将预处理后图像和文本处理为图结构数据,然后实现基于图卷积网络的模型设计,数据训练与答案预测.通过与ReasonNet和BottomUp等模型在VQA2.0数据集上进行对比实验,验
针对山火烟雾的检测存在由于监控范围广、发生频率不固定等造成的高成本问题,在边缘计算思维的启发下,提出了一个基于YOLOv5改进的适用于前端布设的轻量级识别网络.该方法针对YOLOv5模型过大的缺陷,通过修改网络结构,将融合了通道注意力机制CoordAttention的Ghostbottleneck模块与YOLOv5结合,提出一种改进型卷积神经网络CG-yolo识别网络.实验结果表明,CG-yolo相对于YOLOv5s算法速度提高了9.5%,查全率提升了1.8%,查准率仅损失1.7%,部署在NVIDIA的J