论文部分内容阅读
研究用差分法求解自治的发展方程初边值问题时稳定性和收敛性之间的联系.引入反投影算子将发展方程初边值问题的差分格式转化为与初值问题差分格式类似的逐步推进的形式,从而得出:满足Von Neumann条件的差分格式是稳定的格式;在相容条件下,差分格式若稳定(或满足Von Neumann条件)则格式收敛,且对古典解的差分逼近有误差估计式,不再需要线性的条件.