论文部分内容阅读
折扣{0-1}背包问题(D{0-1}KP)的目的是在不超过背包载重的前提下,使得装入背包的所有物品价值系数之和为最大。针对已有算法在求解规模大、复杂度高的D{0-1}KP时的求解精度低的问题,提出了Lagrange插值的学习猴群算法(LSTMA)。首先,在基本猴群算法的望过程中重新定义了视野长度;其次,在跳过程中引入了种群中最优的个体作为第二个支点,并调整搜索机制;最后,在跳过程之后引入Lagrange插值操作来提高算法的搜索性能。对四类实例的仿真结果表明:LSTMA在求解D{0-1}KP时的求解精